Polarons in two-dimensional atomic crystals

نویسندگان

چکیده

Polarons are quasiparticles that emerge from the interaction of fermionic particles with bosonic fields1. In crystalline solids, polarons form when electrons and holes become dressed by lattice vibrations. While experimental signatures in bulk three-dimensional materials abound4–14, only rarely have been observed two-dimensional atomic crystals. Here, we shed light on this asymmetry developing a quantitative ab initio theory atomically thin Using conceptual framework, determine real-space structure recently hole polaron hexagonal boron nitride, discover critical condition for existence crystals establish key descriptors universal laws underpin physics two dimensions. When crystal interact surrounding lattice, they can known as polarons. A computational approach to studying explains why these systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional atomic crystals.

We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentia...

متن کامل

Strain-engineered diffusive atomic switching in two-dimensional crystals

Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb2Te3-GeTe van der W...

متن کامل

Nanoelectronic circuits based on two-dimensional atomic layer crystals.

Since the discovery of graphene and related forms of two-dimensional (2D) atomic layer crystals, numerous studies have reported on the fundamental material aspects, such as the synthesis, the physical properties, and the electrical properties on the transistor level. With the advancement in large-area synthesis methods, system level integration to exploit the unique applications of these materi...

متن کامل

Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as...

متن کامل

Photoluminescence in two-dimensional crystals

Two-dimensional (2D) crystals derived from layered structures exhibit a unique set of properties as elegantly demonstrated for graphene. Semiconducting 2D structures such as MoS2 sheets are attractive building blocks for novel electronic and optoelectronic devices. In this talk, I will report photoluminescence properties of group 6 transition metal dichalcogenide (TMD) 2D crystals and discuss h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Physics

سال: 2023

ISSN: ['1745-2473', '1745-2481']

DOI: https://doi.org/10.1038/s41567-023-01953-4